TMDL Calculations for San Diego Creek - Loading Capacity

	v		Log of	Sediment**	Sediment Concentration					
Flow	Duration	Flow*	Sediment	Yield	C _s					
Tier	(days)	(cfs)	Yield	(t/day)	(mg/L)					
Base & Low	352	15	0.54996	3.548	97					
Medium	10	365	3.18865	1544	1729					
High	3	1595	4.29099	19543	5008					
	Target Conc.			Partition	Dissolved	Dissolved	Dissolved	Particulate	Particulate	Particulate
	Target Conc. in Sediment***			Partition Coefficient	Dissolved Fraction (f_d)	Dissolved Fraction (f_d)	Dissolved Fraction (f_d) -	Particulate Fraction (f _p)	Particulate Fraction (f _p)	Particulate Fraction (f p)
	•	Log K₀c	f_{oc}							
Total DDT	in Sediment***	Log K_{oc} 6.48	<i>f_{oc}</i> 0.01	Coefficient	Fraction (f _d)	Fraction (f d)	Fraction (f d) -	Fraction (f p)	Fraction (f p)	Fraction (f p)
Total DDT Chlordane	in Sediment*** (μg/kg)	•		Coefficient K _d (m³/g)	Fraction (f _d) Low Flow	Fraction (f _d) Medium Flow	Fraction (f _d) - High Flow	Fraction (f _p) Low Flow	Fraction (f _p) Medium Flow	Fraction (f_p) High Flow
	in Sediment*** (μg/kg) 6.98	6.48	0.01	Coefficient K_d (m^3/g) 0.03020	Fraction (f _d) Low Flow 0.2551	Fraction (f _d) Medium Flow 0.0188	Fraction (f _d) - High Flow 0.0066	Fraction (f _p) Low Flow 0.7449	Fraction (f _p) Medium Flow 0.9812	Fraction (f _p) High Flow 0.9934
Chlordane	in Sediment*** (μg/kg) 6.98 4.5	6.48 6.21	0.01 0.01	Coefficient K _d (m³/g) 0.03020 0.01622	Fraction (f _d) Low Flow 0.2551 0.3894	Fraction (f _d) Medium Flow 0.0188 0.0344	Fraction (f _d) - High Flow 0.0066 0.0122	Fraction (f _p) Low Flow 0.7449 0.6106	Fraction (f _p) Medium Flow 0.9812 0.9656	Fraction (f _p) High Flow 0.9934 0.9878

	CCC (Chronic Criterion) (μg/L)	CMC (Acute Criterion) (μg/L)	Concentration**** in Water Col. $C_w \; (\mu g/L)$ Low Flow	Concentration in Water Col. C _w (μg/L) Medium Flow	Concentration in Water Col. C _w (µg/L) High Flow	Selected Value CTR vs. Cw (µg/L) Low Flow	Selected Value CTR vs. Cw (µg/L) Medium Flow	Selected Value CTR vs. Cw (µg/L) High Flow
Total DDT	0.0010	1.1000	0.0009	0.0123	0.0352	0.0009	0.0010	0.0352
Chlordane	0.0043	2.4000	0.0007	0.0081	0.0228	0.0007	0.0043	0.0228
Dieldrin	0.0560	0.2400	0.0017	0.0063	0.0157	0.0017	0.0063	0.0157
Toxaphene	0.0002	0.7300	0.00005	0.0002	0.0005	0.00005	0.0002	0.0005
Total PCBs	0.0140		0.0057	0.0614	0.1732	0.0057	0.0140	0.1732

	Loading	Loading	Loading	Total
	Capacity (g/yr)	Capacity (g/yr)	Capacity (g/yr)	Loading
	Low Flows	Medium Flows	High Flows	Capacity (g/yr)
Total DDT	11.70	8.93	411.84	432.46
Chlordane	9.20	38.39	267.01	314.61
Dieldrin	21.59	56.46	183.39	261.43
Toxaphene	0.64	1.79	6.33	8.75
Total PCBs	73.75	124.99	2027.02	2225.76

^{*}Flows were determined from stream gaging data at San Diego Creek & Campus Drive for years 1977-1997

Calculated water column concentrations (C_w) for low and medium flows were compared to CTR chronic criteria, and high flows were compared with CTR acute criteria. There is no CTR acute criterion for PCBs; therefore calculated Cw for high flows were used to determine loading capacity for PCBs.

- 1. Use sediment yield (tons/day) to calculate C_s = suspended sediment concentration (mg/L) Example: (3.548 tons/day * 1000 kg/ton * 1000 g/kg * 1000 mg/g) / (15 ft³/sec* 86400 sec/day * 28.31 L/ft³) = 97 mg/L
- 2. Use calculated Cs values and partitition coefficients (K_d) to calculate the dissolved fraction (f_d) for each contaminant. f_d values are normalized to a TOC of 1%. K_d (m^3/g) = K_{oc} (L/kg) * f_{oc} / 10^6 and f_{d} =1/(1+ K_d * C_s)
- 3. Use calculated f_d values to calculate the particulate fraction (f_p) for each contaminant. F_p=1-f_d
- 4. Calculate total pollutant concentration in the water column (C_w), based on 1-3, above. C_w=C_t*C_s*(1/F_p)*10^-6
- 5. Calculate loading capacity (using either calculated aqueous concentrations or CTR concentrations, as applicable) Load $(g/yr) = C_w * Q * 28.31 * 86400 * #days of flow <math>(Q_d) * 10^{4}$

^{**}Sediment Yield was determined from the regression equation taken from the RMA 1997 report to ACOE on the feasibility study for Upper Newport Bay restoration. The equation is log(y) =-0.09(log(x)^2)+2.24(log(x))-1.96, where y = sediment (tons/day) and x is flow (cfs)

^{***}Sediment target values are equal to the threshold effect levels (TELs) from the NOAA Sediment Screening Quick Reference Tables (SQuiRTs) (Buchman, 1999).

^{****}Most conservative numbers are to be used in calculating loading capacity.